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Abstract

This paper opens up the "black box" of �rms�pro�t functions to consider
the a¤ect of modelling �rms as principal-agent relationships on the outcomes
of strategic competition. Using a parameterised model it is found that for large
market sizes moral hazard reduces expected output more severely than if �rms
restricted output to jointly maximise pro�ts i.e. collude. This result is obtained
even though �rms use fully optimal non-linear incentive contracts. Additionally
pro�t-maximising �rms may not always invest in a perfect monitoring technol-
ogy even if it is welfare enhancing. As such there may be an over-reliance on
incentive contracts from a welfare perspective. Overall this paper highlights the
importance of modelling �rms� internal workings when addressing regulatory
and other industrial organisation questions.
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1 Introduction

This paper�s purpose is to highlight the impact a classic moral hazard problem within
�rms can have on equilibrium outcomes in a market involving strategic competition
between �rms. The paper demonstrates that even when companies are able to write
fully optimal contracts the costs of agency can still have a signi�cant downward
impact on equilibrium output. Indeed, in a parameterised model with linear demand,
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as markets grow "large" the downward impact of moral hazard on expected output
is greater than if �rms could collude to restrict output. The signi�cance of this result
is that the welfare losses associated with collusion are seen as justifying the policy
responses of antitrust authorities. The key question, therefore, is whether there is a
role for policy regarding agency costs?

Some level of agency costs will often be inherent in a production process. It is
shown that pro�t-maximising �rms may fail to make investments that reduce agency
costs despite them being welfare enhancing. As such, from a welfare perspective,
there maybe an over-reliance on incentive contracts. The remaining open question is
whether policymakers/regulators can actually make welfare enhancing interventions.

Overall this paper highlights the importance of modelling �rms as collections of
utility maximising individuals, bound together by contracts, when considering �rm
behaviour in oligopolies. It also shows why consumers and policymakers, not just
shareholders, have a legitimate interest in the way �rms resolve agency problems.

A myriad of di¤erent agency problems face �rms and their seriousness, particularly
for large corporations, has long been recognised.1 This paper focuses on perhaps the
classic agency problem: unobservable e¤ort by a risk-averse agent.2 In the current
model agent e¤ort alters the probability distribution of a �rm�s output with higher
e¤ort increasing the likelihood of higher output. Each �rm comprises a single principal
and a single agent. The agent, therefore, is best interpreted as a senior production
manager whose e¤ort alters an entire �rm�s output.

Since the agent selects their e¤ort based on the incentive contract o¤ered the
principal can alter the �rm�s expected output by altering the incentive contract. To
the best of my knowledge this is the �rst model of agency costs in oligopoly where a
cost-minimising non-linear incentive contract, incorporating e¤ort and a performance
measure as continuous variables, is derived using the �rst-order approach. In a gener-
alised n-�rm setting conditions are obtained for the existence of an equilibrium in the
principals�contract parameter choice game. In a parameterised setting the model is
solved with both linear and exponential inverse demand curves. Using a linear inverse
demand curve the results regarding market size are obtained. Using an exponential
inverse demand curve allows analysis regarding the number of �rms and the elasticity
of demand to be performed.

A short literature review follows in section 2. In section 3 a parameterised version
of the model is introduced and in section 4 this model is solved. Section 5 analyses the
model numerically including for several extensions. Section 6 provides a discussion
and considers the results�robustness before section 7 concludes.

1See Jensen and Meckling (1976).
2See Stiglitz (1974).
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2 Literature Review

Starting with Leibenstein�s (1966) discussion of "X-ine¢ ciency", it has been widely
theorised that competition between �rms can alter the extent of agency problems
in �rms. However research investigating the impact of agency problems on market
outcomes is more limited. This is despite the prevalence of agency relationships
within companies, the considerable attention given by researchers and policymakers
to competition and the continuing debates about executive pay. Examples of work
looking at the impact of competition on agency problems include Hart (1983), Scharf-
stein (1988) and Schmidt (1997). Hart (1983) and Scharfstein (1988) both analyse
the impact a fringe of "entrepreneurial" �rms without agency problems has on �rms
that have a separation of ownership and control. Schmidt (1997) emphasises that
greater competition has a disciplining e¤ect on employees by increasing instead the
threat of liquidation and unemployment. However, when taken as a whole, this liter-
ature provides mixed results regarding the impact of increased competition on e¤ort
incentives.

Closer to the current paper is Raith (2003). Raith constructs a circular city model
of monopolistic competition which allows entry by �rms. Here agent e¤ort results in
a reduction in marginal costs. However Raith restricts attention to linear incentive
contracts and the paper�s aim is di¤erent to the current investigation. Raith�s purpose
is to create a setting where there is a positive relationship between risk and incentive
strength.3

The strategic delegation literature, started by Fershtman and Judd (1987) and
Sklivas (1987), does investigate the impact of incentive contracts on product market
competition. However, whilst this literature is described in terms of a "principal"
and an "agent", it generally assumes agents are risk-neutral and so agency costs are
ignored. Instead the role of delegation itself as a strategic commitment device is
emphasised. Whilst accepting that incentive contracts can be used strategically the
current paper takes the original theoretical basis for incentive contracts - to induce
e¤ort - as the primary motivation for their existence.

Gal-Or (1997) provides an overview of the small number of contributions to the
strategic delegation literature that do include true agency problems. However in
these papers, such as Fumas (1992) and Gal-Or (1993), attention is again restricted
to linear incentive contracts or the focus remains on decisions regarding delegation
and organisational structure. The salesforce compensation literature, for example
Bhardwaj (2001), also looks at delegation questions whilst incorporating moral hazard
problems. In this literature Mishra and Prasad (2005), unusually, do consider optimal

3Other papers looking at the impact of competition on incentives include Holden (2008), Plehn-
Dujowich and Serfes (2010) and Theilen (2010).
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non-linear incentive contracts. However Mishra and Prasad only demonstrate the
combinations of centralised pricing and delegation that can be equilibrium candidates.

Moving away from delegation issues Hermalin (1994) demonstrates that non-
convexities in �rms� agency problems can cause otherwise identical �rms to o¤er
incentives of di¤ering strengths. While Aghion, Dewatripont and Rey (1999) consider
the role of external �nancing as a disciplining device on managers of �rms engaged in
oligopolistic competition. Lastly Bonatti (2003) suggests that the e¤ort monitoring
capabilities of unions may favour the use of collective bargaining in oligopoly settings.

3 The Model

This section describes the parameterised model�s structure. The model is presented
from the perspective of principal-agent pair i.

Two principal-agent pairs (�rms) compete in a quantity competition game. The
overall game involves three stages:
Stage 1 - Simultaneously each principal devises the optimal incentive contract for

their agent. This includes selecting the optimal e¤ort level to induce.
Stage 2 - Given the incentive contract o¤ered agents select the e¤ort level max-

imising their utility.
Stage 3 - The outcome of the production process is realised. The output is sold

at the price required to clear the market. All players receive their pay-o¤s.

The principal-agent pairs are assumed identical in all respects.4 Output is homo-
geneous and the output of each �rm is a random variable dependent on agent e¤ort.
Firm i�s output is denoted qi where qi 2 [0;1) and Q = qi + qj. Agent i�s e¤ort is
denoted ai where ai 2 [a; a], a > 0 and A = ai + aj.5 The inverse demand function is
linear:

P (Q) =

�
B �Q;
0;

B � Q
B < Q

�

Output is exponentially distributed with the probability density function for out-
put given a speci�c e¤ort level ai being:

f(qijai) =
(

1
ai
e
� qi
ai ;

0;

qi � 0
qi < 0

)
4The proof for existence of equilibrium, shown in Appendix 1, does not require symmetry.
5Assume that a is su¢ ciently low and a is su¢ ciently high that they never impinge on the

equilibrium outcome.
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The exponential distribution is used for several reasons. Firstly, this distribu-
tion�s support is [0;1) thereby ruling out negative quantities. Secondly, since the
distribution�s support remains constant regardless of e¤ort the principal can never
use output to infer the an agent�s e¤ort with certainty. Thirdly, it ensures Jewitt�s
(1988) conditions for the �rst-order approach to be valid hold and, lastly, the cumu-
lative distribution for output, F (qijai), satis�es the condition for the single-crossing
property to hold. The condition for single-crossing is that Fai(qijai) � 0 holds for all
qi and for some qi Fai(qi j ai) < 0 holds. As such output is an informative signal of
e¤ort.

Each principal is risk-neutral and principal i�s utility function is Y (�i) = �i where
�i is the principal�s expected pay-o¤. Agent i�s utility is denoted U(wi) where wi is
agent i�s income.6 Since the agent is risk-averse U(wi) is increasing concave in wi. The
agent�s total utility is denoted 
 (wi;ai) and the disutility from e¤ort is denoted V (ai).
The agent�s utility from income and disutility from e¤ort are additively separable
so that 
 (wi;ai) = U(wi) � V (ai). In the model solved below V (ai) = a2i and

U(wi) = 2 (wi)
1
2 .7

As e¤ort is unobservable assume that the principal must use an incentive com-
patible contract that is a continuous function of output to induce e¤ort. Denote
this contract wi(qi). As the distributions of output for each �rm are independent no
reduction in costs is o¤ered by using relative performance evaluation and rewarding
agents on the basis of both qi and qj. Similar reasoning also means there is no bene�t
from rewarding an agent on the basis of their �rm�s pro�ts.

The labour market is competitive and denote the agent�s reservation utility R � 0.
Without a loss of generality assume there are no other production costs beyond the
cost of labour. Also assume that each principal must always operate, employ an agent
and induce the minimum e¤ort level a.8

Beyond the e¤ort exerted there is no other hidden information in the model. It
is assumed that each principal knows the shape of their own agent�s utility function
and all the characteristics of the rival principal-agent pair.

4 Solving the model

The objective when solving the model is to obtain a pure strategy Nash equilibrium
for the contract parameters, also denoted ai (aj), selected by each principal.

6For simplicity assume the agent has no other wealth or income sources.
7This particular utility function is used for tractibility.
8This assumption ensures no downward jump in the �rm�s reaction function occurs which could

a¤ect the proof of existence. As such the model considers a short-run setting.
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Principal i�s problem can be thought of as involving two separate steps. The �rst is
to derive a contract which induces a given level of e¤ort from agent i at the minimum
cost. The second is to select the amount of e¤ort to induce, via the incentive contract,
to maximise pro�ts given the interaction between �rms in the product market. Each
of these steps is considered in turn.

Step 1: Deriving the cost-minimising contract:
The incentive contract must satisfy the agent�s participation constraint (PC) and

incentive compatibility constraint (IC). Formally this problem can be expressed as:

max
wi(qi)

R1
0
�wi(qi)dF (qijai) (1)

subject to PC: R1
0
2 (wi(qi))

1
2 dF (qijai)� a2i � R (2)

and IC: R1
0
2 (wi(qi))

1
2 dFai(qijai)� 2ai = 0 (3)

The cost-minimising contract is found using the �rst-order approach as in Mirrlees
(1976) and Holmstrom (1979). To be incentive compatible the contract must max-
imise the agent�s expected utility at the e¤ort level the principal wishes to induce.
The �rst-order approach uses the �rst-order condition (FOC) of the agent�s maximisa-
tion problem as a su¢ cient condition for reaching the global maximum of the agent�s
problem. Thus the agent�s FOC is used as the IC in the principal�s maximisation
problem above.

Mirrlees (1999)9 identi�ed that using an agent�s FOC as the IC is not generally
valid. The FOC is a necessary rather than su¢ cient condition for maximising the
agent�s utility. However Jewitt (1988) provides conditions for which the FOC is a
su¢ cient condition for maximisation of an agent�s utility. Jewitt�s conditions on the
distribution function and utility function are:
(i)
R q
�1 F (qja)dq is non-increasing convex in a for each value of q

(ii)
R
qdF (qja)dq is non-decreasing concave in a

(iii) fa(qja)
f(qja) is non-decreasing concave in q for each value of a

(iv) the utility of the agent is a concave increasing function of the observable
variables; mathematically !(z) = U

�
U 0�1

�
1
z

��
; where z > 0, is concave

An explanation of why these conditions are needed is provided in Appendix 2.

9This paper was originally completed in 1975 but not published.
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Lemma 1 Jewitt�s (1988) conditions for the validity of the �rst-order approach
are met by the current parameterised model.

Proof. Jewitt states that all the distributions falling within the exponential
family meet conditions (i)-(iii) and hence the current model satis�es these conditions.
Regarding condition (iv), since 1

U 0(w) = (w(q))
1
2 , U(w) is a linear, and therefore

concave, transformation of 1
U 0(w) . Hence using the �rst-order approach is valid. �

Whilst Jewitt�s conditions ensure the agent�s maximisation problem is concave
they do not ensure the concavity of the principal�s maximisation problem.10 At
present the concavity (strict quasiconcavity) of the principal�s problem is assumed.

Lemma 2 The cost-minimising contract for the principal to induce an e¤ort level
ai is:

w�i (qi) =
1
4
(a2i +R + 2ai (qi � ai))

2

Proof. Principal i�s problem can be expressed as the following Lagrangian :

max
wi(qi)

Li (ai) =
R1
0
�wi(qi)dF (qijai)

+�i

hR1
0
2 (wi(qi))

1
2 dF (qijai)� a2i �R

i
+�i

hR1
0
2 (wi(qi))

1
2 dFai(qijai)� 2ai

i
(4)

In (2) the PC is expressed as an inequality constraint however in (4) it is assumed
to bind with equality. Intuitively this assumption must be true. If the PC did not
bind with equality the principal could reduce the transfer payment made to the agent,
thus increasing pro�ts, whilst still ensuring the agent exerted the desired e¤ort level.

The necessary condition for the cost-minimising contract is found by holding ai
�xed and taking the partial derivative of (4) with respect to wi(qi). Setting equal to
zero gives:

@Li
@wi(qi)

= �
R1
0
dF (qijai) + �i

R1
0
(wi(qi))

� 1
2 dF (qijai)

+�i
R1
0
(wi(qi))

� 1
2 dFai(qijai) = 0

Dividing throughout by (wi(qi))
� 1
2 dF (qijai), recognising that dF (qijai) = f(qijai)dqi

and re-arranging leads to:

(wi(qi))
1
2 = �i + �i

fai (qijai)
f(qijai)

Inserting the expressions for f(qijai) and fai(qijai) and then simplifying gives:
10The need for the principal�s problem to be concave is noted by Grossman and Hart (1983).
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wi(qi) =
�
�i +

�i
a2i
(qi � ai)

�2
(5)

Inserting (5) into the IC and PC and then solving as a system of two equations
in two unknowns gives the following expressions for �i and �i:

�i =
a2i+R

2
(6)

�i = a
3
i (7)

Inserting these values for �i and �i back into (5) gives the cost-minimising contract
to induce the e¤ort level ai as:

w�i (qi) =
1
4
(a2i +R + 2ai (qi � ai))

2
(8)

�

Step 2: Selecting the optimal value of ai:
The second step of the principal�s problem is to select the optimal value of ai to

write in the incentive contract given by (8). Note that ai is both a parameter in
the contract and also the level of e¤ort agent i will exert given (8). As such when
selecting the optimal value of ai to write in the contract the principal is selecting the
optimal e¤ort level to induce in the agent.

Holding principal j�s choice of aj �xed the unconstrained pro�t maximisation
problem facing principal i is:

max
ai
E(�i) =

R B
0

R B�qj
0

(B � qi � qj) qidF (qijai)dF (qjjaj)�
R1
0
w�i (qi)dF (qijai)

Substituting in the expressions for w�i (qi), dF (qijai) and dF (qjjaj), setting R = 011
and integrating gives �rm i�s expected pro�t function as:

E(�i) = aia
3
j

e
� B
aj

(ai�aj)2
+ a2i e

� B
ai
Bai�Baj+2a2i�3aiaj

(ai�aj)2
+ (B � 2ai � aj) ai � 5

4
a4i (9)

Assuming that E (�i) is strictly quasiconcave and there exists a point such that
@E(�i)
@ai

= 0 then the FOC, @E(�i)
@ai

= 0, will be a necessary and su¢ cient condition for
pro�t maximisation. The full FOC is:

@E(�i)
@ai

=

�a3j e
� B
aj

(ai�aj)3
(ai + aj) +

e
� B
ai

(ai�aj)3

�
B2a2i � 2B2i aiaj +B2a2j + 3Ba3i

�8Ba2i aj + 5Baia2j + 4a4i � 11a3i aj + 9a2i a2j

�
+B � 4ai � aj � 5a3i = 0 (10)

11This is done for simplicity.
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An equivalent condition can be found for principal j.

The next step is to demonstrate an equilibrium exists in the principals�contract
parameter choice game.

Theorem 1 In a n-�rm setting if:
(i) Jewitt�s (1988) conditions for the validity of the �rst-order approach hold, and
(ii) each principal�s pro�t function is strictly quasiconcave in their own contract

parameter (ai for principal i)
then an equilibrium will exist in the principals�contract parameter choice game.

Proof. The proof is adapted from the proof of existence of an n-�rm Cournot
equilibrium by Frank and Quandt (1963). The proof is shown in Appendix 1.12

Given Theorem 1 the equilibrium values of ai and aj can be found numerically
using (10) and the equivalent condition for principal j.

5 Numerical Analysis

5.1 Varying market size (B)

To provide comparative benchmarks for the impact of moral hazard on market out-
comes two additional scenarios are considered. The �rst is where e¤ort is observable
and veri�able thus removing the agency problem. This scenario is referred to as the
�rst best. In the second scenario e¤ort is again observable and veri�able but now
�rms act to maximise joint pro�ts, i.e. collude.13 This second benchmark is chosen as
the lost output/surplus from collusion is seen as su¢ cient to justify a policy response
of antitrust laws.
12If the non-standard demand function:

P (qi; qj) = B � qi � qj for all qi � 0; qj � 0

an unique equilibrium exists in the principals�contract parameter choice game for the parame-
terised version of the model. The proof for this is an adaptation of Szidarovsky and Yakowitz�s
(1977) proof of an unique Cournot equilibrium. Imposing additional assumptions this proof can be
extended to a general n-�rm setting.
Signi�cantly, in a parameterised model using this non-standard demand function, it is possible

to prove that each principal�s pro�t maximisation problem is concave. It is also possible to show
that as B grows large the equilibrium values of ai and aj found using this non-standard demand
function tend to those using the standard demand function stated in section 2. The workings for
these results are available on request.
13The ability to sustain collusion is assumed rather than demonstrated.
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Note that for the exponential distribution the expected output of a �rm equals
the e¤ort exerted by the �rm�s agent, i.e. E(qi) = ai.

To solve the problem numerically it is easiest to appeal to the problem�s symmetry
and consider a symmetric equilibrium such that a�i = a

�
j = a. Using this fact, setting

R = 0 and applying l�hôpital�s rule three times to (10) gives the equilibrium condition
for moral hazard in the table below. The proofs of the other two conditions are
included in Appendix 3.

First Best 1
a2
e�

B
a

�
1
3
B3 + 3

2
B2a+ 4Ba2 + 6a3

�
+B � 5a� a3 = 0

Moral Hazard 1
a2
e�

B
a

�
1
3
B3 + 3

2
B2a+ 4Ba2 + 6a3

�
+B � 5a� 5a3 = 0

Maximisation of joint pro�ts 1
2a2
e�

B
a (B3 + 4B2a+ 10Ba2 + 12a3) +B � 6a� a3 = 0

14

Proposition 1 As the market becomes "large" moral hazard has a far greater
downward impact on expected output per �rm than maximisation of joint pro�ts (col-
lusion) by �rms.

This central result is shown in Figure 1. In the top graph expected output per
�rm is plotted for values of B from 0.05 to 5. This highlights that for "small" market
sizes collusion causes a greater reduction in expected output than moral hazard. The
bottom graph considers values of B from 0.05 to 250. It illustrates moral hazard�s
greater downward impact on expected output as the market becomes "large".1516

The relative importance of moral hazard versus collusion varies according to the
relative sizes of agency costs and the negative revenue externality associated with
competition. The relative importance of moral hazard and collusion changes with
market size will therefore depend on the speci�cations of the demand curve, the cost
of e¤ort function and the utility function. The cost of e¤ort function and the utility
function together determine the agency cost. The speci�cation of the demand curve
determines the size of the negative revenue externality that occurs when �rms operate
independently.17 This externality is internalised when �rms act together to maximise
their joint pro�ts. The larger the externality to be internalised the greater the drop
in expected output when �rms maximise joint pro�ts.

14Given that expected wage costs remain convex when there is observable and veri�able e¤ort
Theorem 1 also holds for the �rst best and maximisation of joint pro�ts.
15The MATLAB M-�les generating Figures 1, 3, 4 and 5 are available on request.
16If the agents� reservation utility, R, is high enough then for all values of B large enough to

generate positive expected pro�ts moral hazard will have a greater downward impact on expected
output than maximisation of joint pro�ts.
17When setting their own contract parameter independent �rms will fail to consider the impact

their choice has on the revenue received by rival �rms. If �rm i increases its contract parameter it
increases �rm i�s expected output and hence lowers the expected price for �rm j�s output.
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Figure 1: Equilibrium expected output (contract parameter/e¤ort level) per �rm as
market size, B, increases
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In the current setup the agency cost (the di¤erence in wage costs between when
moral hazard is and is not present) is a4i and so is convex in e¤ort. Assuming B is
large relative to ai the externality �rm i causes is approximately �aiaj.18 Therefore
when market size increases and �rms induce more e¤ort the agency cost increases at
a faster rate than the externality. Hence when B is large a �rm facing a moral hazard
problem will set a lower value of a than one maximising joint pro�ts.

5.2 Extension 1 - Investment in a perfect monitoring tech-
nology

A key question is whether the above results have policy implications? There is a
potential role for policy only if a benevolent social planner could increase welfare. If
agency costs are an inherent part of the production process there will be no role for
policy. However it is probable that �rms do have means to reduce agency costs. For
example, �rms could invest in productivity monitoring software or employ "mystery
shoppers". The issue is whether the incentives for pro�t-maximising �rms to minimise
agency costs lead to welfare maximising outcomes. It is already known, from Shleifer
and Vishny (1986), that if the ownership of a �rm is dispersed, i.e. there are multiple
principals, then there may be an under-investment in monitoring. This is because
each principal can free-ride on the monitoring e¤ort of others. This section highlights
that under-investment in monitoring may occur for another reason: �rms do not
consider the gains in consumer surplus associated with reduced agency costs.

For simplicity, assume �rms can invest in a perfect monitoring technology that
makes e¤ort observable and veri�able. Let each �rm have a discrete action set D 2
fInvest;NotInvestg. Simultaneously each �rm decides which action to play from D
in a stage game prior to the game laid out in section 2. The cost of the investment
to each �rm is C.

Three numerical examples are considered where B is set to 50, 100 and 200 respec-
tively. The purpose is to see if the range of C where pro�t-maximising �rms choose
Invest matches the range of C where a social planner maximising total surplus would
play Invest.

Proposition 2There exists a range of investment costs such that pro�t-maximising
�rms will not undertake an investment in a perfect monitoring technology despite it
being welfare enhancing. As market size, B, grows larger so does the region of in-
vestment costs where di¤ering decisions are made.

18Recall from footnote 14 that when B is large the current model can be approximated with one
where the inverse demand curve is: P (qi; qj) = B� qi� qj for all qi; qj � 0. The value �aiaj comes
from this alternative model.
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Figure 2: The di¤ering investment decisions of independent �rms and a benevolent
social planner

Proof: See Appendix 4

The nature of the divergence in investment decisions is summarised in Figure
2. Where there is a divergence in the investment decisions one can say that pro�t-
maximising �rms will have an over-reliance on incentive contracts from a welfare
perspective.

The size of the region where the investment choices of �rms and a social planner
di¤er will depend on the model�s speci�cation, in particular, the form of the inverse
demand curve.19 However the underlying intuition for this divergence appears robust.
Pro�t-maximising �rms always will be less willing to invest than a welfare maximising
social planner unless �rms can fully capture their products�consumer surplus. As the
market becomes larger consumer surplus increases and so the investment cost range
where investment decisions diverge becomes larger.

5.3 Extension 2 - An exponential inverse demand curve

Whilst using a linear inverse demand curve provides consistency with basic oligopoly
models the resulting expected revenue function signi�cantly complicates the analysis.
The analysis is simpli�ed when, instead, an exponential inverse demand curve is used.
Signi�cantly this change of speci�cation makes it possible to prove that the expected
pro�t function is strictly quasiconcave in the parameterised setting. It also allows

19See Proposition A4.1 in Appendix 4 for the numerical ranges.
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analysis regarding the number of �rms in an industry and the elasticity of the inverse
demand curve.

The inverse demand curve used in this extension is:

P (Q) = De��Q (11)

where D and � are strictly positive constants and Q is the total output produced
by all �rms. D represents the highest willingness to pay of any consumer (i.e. the
vertical intercept of the inverse demand curve) whilst � a¤ects the elasticity of the
inverse demand curve. The elasticity of price with respect to quantity which is given
by:

" = dP
dQ

Q
P
= ��Q

An increase in � increases this elasticity�s absolute value thus making price more
sensitive to the volume of output produced.

Theorem 1 can be used to prove that an n-�rm equilibrium exists in a generalised
setting for the inverse demand curve given by (11). The key assumption remains
that the expected pro�t function is strictly quasiconcave. Apart from changing the
expected revenue function in (A1.4) there are no other changes to the proof.

Lemma 3 For the exponential inverse demand function described in (11) the
expected pro�t function will be strictly quasiconcave in ai if the assumptions of the
parameterised model hold. Hence a n-�rm equilibrium in the contract parameter
choice game exists. For the two-�rm case the equilibrium is unique.

Proof. See Appendix 5.

Now to analyse numerically how equilibrium expected output as the parameters
D, � and n are varied. Again the three scenarios of the �rst best, moral hazard
and joint pro�t maximisation are considered. The expected pro�t functions and the
�rst-order conditions for each case are stated in Appendix 5.

Proposition 3 As D, � and the number of �rms are increased the relative im-
portance of moral hazard compared to joint pro�t maximisation decreases.

Firstly consider the impact of D and � on the equilibrium value of a for the two
�rm case. As for the case of linear demand set R = 0. When D is varied let � = 0:1.
When � is varied let D = 100. The results, in terms of total industry output, 2a, are
shown in Figure 3.

As D and � are varied whether moral hazard or joint pro�t maximisation has the
greater downward impact. When D and � are small moral hazard has the greater
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downward impact. As D and � grow large joint pro�t maximisation has the greater
downward impact on expected output. This switch, again, results from the changing
relative size of the agency cost against the negative revenue externality of competition.
Increasing D causes the slope of the inverse demand curve to become increasingly
negative:

@P (Q)
@Q

= ��De��Q

When D is high a given increase in output will cause a greater absolute drop in
price and, hence, a larger revenue externality. When � increases the argument is
similar except that an increase in � now leads to a greater percentage drop in price
for a given percentage increase in output.20

Lastly the impact ofchanging the number of �rms,n, on equilibrium expected
output is considered. Numerical analysis equivalent to that for two �rms has been
performed for the cases of three and four �rms. The results are shown in �gures 3, 4
and 5.21

As n increases so does the expected industry output. The �gures also show that
as the n increases the values of D and � at which collusion rather than moral hazard
has the greater downward impact on output are reduced. The values of D and �
where the crossing points occur are:

Number of Firms Value of D Value of �
2 3439:5 0:325
3 573:6 0:179
4 186:0 0:123

20Also note that as D and � grow large the equilibrium values of a under moral hazard and in the
�rst best converge. Whilst this result might appear odd, note that for increases in � the equilibrium
value of a falls. As a result when � is increased the absolute size of the agency cost is reduced.
Hence moral hazard has a smaller downward impact on expected output compared to the �rst best.
For increases in D, the result is understandable given the FOC for pro�t maximisation. Firm i�s

FOC when moral hazard is present is:

@E(�i)
@ai

= D(1��ai)
(�ai+1)

3(�aj+1)
� 5a3i = 0

(See Appendix 5 for the derivation). If ai � 1
� then this condition can never hold. As such there

is an upper limit to the equilibrium value of ai whatever the value of D.
In the �rst best this upper limit on ai is reached at a lower value of D than when there is moral

hazard. Under joint pro�t maximisation as total output is split between two �rms the limit value
of a is approximately half the limit value of a in the �rst best.
21In these �gures total industry output, rather than output per �rm, is reported and the scales

on the axes vary.
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Figure 3: Expected industry output in a two �rm industry as D and � are varied
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Figure 4: Expected industry output in a three-�rm industry as D and � are varied
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Figure 5: Expected industry output in a four-�rm industry as D and � are varied
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That the values of D and � where the crossing points occur are decreasing in n is
unsurprising for two reasons. Firstly, as n increases the negative revenue externality
when they do not co-operate grows. As such when joint pro�t maximisation inter-
nalises this externality there is a greater drop in expected industry output. Secondly,
as n increases the e¤ort each �rm induces in its agent falls due to each �rm hav-
ing a smaller market share. Since the agency cost is increasing in e¤ort, the cost of
agency is reduced and so the downward impact of moral hazard on expected output
is reduced. Intuitively it seems reasonable to suggest that this relative drop in the
signi�cance of moral hazard as n increases will be independent of the demand curve�s
speci�cation.

6 Robustness and Discussion

Whilst the main results have been obtained in a speci�c parameterised model the
basic intuitions driving them seem to apply more generally. Whether moral hazard
or joint pro�t maximisation has a greater downward impact on expected output will
depend on the relative sizes of the agency cost and the negative revenue externality
between �rms. The intuition that �rms may not invest in agency cost reductions
as they do not bene�t from the resulting increases in consumer surplus also appears
robust.

It should be noted that the magnitude of agency costs in this model is in�uenced
by the assumption of each �rm employing a single agent. When addressing ques-
tions relating to senior executives this assumption is probably less signi�cant due to
inherent indivisibilities in their tasks. Nevertheless incorporating multiple agents in
each �rm represents as important extension. With multiple workers the signi�cance
of moral hazard, as highlighted by Proposition 3, may decrease. This is because with
more workers each individual worker will be required to exert less e¤ort for the �rm
to produce a given level of output. Since agency costs per worker are increasing in
e¤ort as e¤ort per workers falls so do agency costs.22 For agency costs to remain an
important determinant of market outcomes an upper limit on the number of agents
employed by a �rm would need to exist. To some extent the �xed costs associated
with employing additional workers may limit workforce size. Indeed it would be
interesting to endogenise workforce size as an initial stage game.

In a model with endogenous workforce size it would seem natural to relax the
assumption of a perfectly competitive labour market. If there was a binding con-
straint on labour supply to increase expected output e¤ort per worker would need

22However environments with multiple workers may create new agency issues. For example, if
output per worker is not observable workers may free-ride on the e¤orts of others as in the team
production literature.
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to increase hence increasing the impact of agency costs. An exogenous restriction
on labour supply would also limit the number of �rms that could enter a market.
This logic suggests that agency costs due to unobservable e¤ort may be particularly
high within professions where there are a limited number of quali�ed individuals, e.g.
law, medicine and accountancy. In each of these professions the perception of high
workloads, need to exert high e¤ort and therefore relatively high pay seems to �t the
intuition of the model.

One also needs to recognise the potential role of the exponential distribution in
driving Proposition 2. For the probability density function used in section 2 increas-
ing e¤ort increases both the expected value and the variance of output. As a result if
the principal wishes to induce additional e¤ort the agent must be compensated both
for the additional e¤ort exerted and for being exposed to a "riskier" performance
variable. To address this issue one could develop a model using LEN-framework23

where e¤ort reduces marginal costs. In the LEN-framework the incentive contract is
linear, the agent�s utility function is exponential and there is a normally distributed
additive shock term. Using the normal distribution ensures the performance measure
has a constant variance. However a linear contract is unlikely to be cost-minimising.
Nevertheless, in practice, companies tend to use relatively simple linear incentive con-
tracts and so developing a model re�ecting this reality would have empirical merit.24

If real-world contracts are not cost-minimising the current model would represent
a lower-bound on the agency costs facing �rms and the downward impact of moral
hazard.25

On a separate note the model also demonstrates the potential role incentive con-
tracts may play in sustaining product market collusion. In the current model, if a
�rm wanted to restrict output as part of a collusive arrangement they would achieve
this by reducing the strength of workers� incentives in turn reducing worker e¤ort
and hence output. This hints at a neglected mechanism - using incentive contracts -
which could be used to support product market collusion.26

Lastly if �rms could commit to particular incentive contracts then agency costs
themselves could be used as a strategic commitment device. For example, in this
model revenue and pro�ts are noisier performance variables than output as the former
are determined by the output distributions of all �rms. As a result rewards based

23See Holmstrom and Milgrom (1987).
24See Murphy (1999)
25That agency costs may well be higher in actual �rms is also reinforced by the managerial

power hypothesis of Bebchuk and Fried (2003). These authors argue that the design of incentive
contracts themselves is subject to an agency problem and can be captured by management. As such
contracts are likely to be biased towards enhancing agents�personal rewards rather than maximising
shareholder returns.
26This observations �ts with recent contributions by Spagnolo (2005), Chen (2008) and Aubert

(2009).
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on revenue or pro�ts would be a commitment to higher agency costs and reduced
expected output. However, in practice, it is questionable whether incentive contracts
can have true commitment value. This is because incentive contracts are rarely fully
observable and generally can be subject to re-negotiation.

7 Conclusion

The paper�s key technical contribution, compared to other models combining moral
hazard and competition, is deriving an optimal non-linear incentive contract where
e¤ort and output are continuous variables. Comparing the relative importance of
�rms co-operating over output decisions and �rms�internal agency problems in de-
termining market outcomes is also novel. The central �nding from the linear demand
model is that increasing market size causes moral hazard to have a greater downward
impact on expected output than collusion between �rms. The central �nding from
the exponential demand model are that increasing the number of �rms or increasing
the elasticity of price with respect to quantity causes the impact of moral hazard on
market outcomes to become relatively less important.

The model also highlights that �rms�private incentives when deciding between
monitoring and incentive contracts may not always be aligned with welfare maximi-
sation. This is notable since until the onset of the Financial Crisis concerns about
managerial incentives generally focused on their potential sub-optimality from the
perspective of shareholders. The non-investment in monitoring displayed here is an
example of �rms�incentive contracting decisions having impacts on the wider econ-
omy. However, there is some distance between recognising that these wider impacts
exist and suggesting that policymakers can take concrete policy actions to address
any sub-optimality.

Policy intervention regarding collusion is relatively straightforward once collusion
has been proven. A standardised policy response - collusion should be stopped - can
be applied since collusion is unambiguously bad. Evaluating whether the welfare gain
from a reduction in agency costs outweighs the investment costs required to achieve
it is a more challenging proposition and one which is context speci�c. Nevertheless
it does seem important for policymakers and regulators to note that in speci�c mar-
kets private �rms�solutions to agency problems may not be optimal from a welfare
perspective.

Highlighting the signi�cance of agency costs on product market outcomes also
re-a¢ rms the importance of moves to improve the oversight of managerial pay and
performance. Increased reporting requirements and giving shareholders a more robust
say on pay should hopefully give a greater priority to reducing agency costs.
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Overall this paper emphasises the importance of considering the internal workings
of �rms when addressing questions in industrial organisation. The potentially signif-
icant impact of �rms�internal agency problems on market outcomes seems an issue
which has perhaps lacked attention in the past. Whilst it is dangerous to base policy
conclusions on a single parameterised model the results do suggest that more research
is warranted into this reason why all members of society, not just shareholders, have
a legitimate interest in the way �rms resolve agency issues.

8 Appendices

8.1 Appendix 1 - Generalised proof of existence using Frank
and Quandt (1963)

8.1.1 The model

Consider a generalised n-�rm setting where agents and �rms can be heterogeneous.
The setup of the general model is identical to that of the parameterised model unless
otherwise stated. The problem is described from the perspective of �rm i.

Given the n-�rm setting now let Q =
Pn

k=1 qk and A =
Pn

k=1 ak. Let �j =
(a1; :::; ai�1; ai+1; :::; an) be the vector of contract parameters chosen by all principals
other than principal i. Continue to assume that demand is linear and continuous:

P (Q) =

�
B �Q;
0;

B � Q
B < Q

�
When P (Q) = 0 a �nite quantity of the good is demanded. This means there is

a positive real number M <1 such that E [P (QjA)] = 0 for all A �M .

The probability density function for output given a speci�c e¤ort level is f(qijai).
Assume that f(qijai) is continuous and di¤erentiable. Also assume that the cumula-
tive distribution function F (qijai) satis�es Fai(qijai) � 0 for all qi and that for some qi
Fai(qijai) < 0 holds. The support of the distribution is [q;1) where q � 0 thus ruling
out negative quantities.27 The distribution�s support remains constant regardless of
e¤ort.

The cost of e¤ort function, Vi(:), is now assumed to be smooth, continuous, in-
creasing and convex. The �rst derivative of the agent�s utility function with respect
to wealth, U 0i (w), must be invertible.

27This assumption rules out, for example, the normal distribution.
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8.1.2 Solving the model

To solve the model follow Holmstrom (1979) but split the principal�s problem into
two steps. The �rst step involves the principal deriving the cost-minimising incentive
contract, w�i (qi), to induce a given level of e¤ort ai. For principal i this problem can
be stated as:

max
wi(qi)

E (�i) =
R1
0
�wi(qi)dF (qijai) (A1:1)

subject to PC: R1
0
Ui(wi(qi))dF (qijai)� Vi(ai) � Ri (A1:2)

and IC: R1
0
Ui(wi(qi))dFai(qijai)� V 0i (ai) = 0 (A1:3)

The second step is for the principal to select the optimal contract parameter (the
optimal e¤ort level to induce) to maximise pro�ts. This problem can be written as:

max
ai
E (�i) =R B

0
:::
R B�Q�i�j
0

R B�Q�i
0

(B �Q) qi�nk=1dF (qkjak)�
R1
0
w�i (qi)dF (qijai) (A1:4)28

where Q =
Pn

k=1 qk = q1 + :::+ qi + qj + :::+ qn and Q�i is the same summation
but excluding qi.

When solving the model the objective is to obtain a pure strategy Nash equilibrium
in terms of the contract parameter selected by each principal.

Step 1: Deriving the cost-minimising contract:
It is assumed that Jewitt�s (1988) conditions for the validity of the �rst-order

approach hold.

Lemma A1.1 The cost-minimising incentive contract is:

w�i (qi) = U
0�1
i

�
1

�i+�i
fai (qijai)
f(qijai)

�
Given suitable assumptions on the agent�s utility function and the distribution

function this optimal contract will be convex. It is assumed these conditions are met.

Proof. Principal i�s problem as described by (A1.1)-(A1.3) can be expressed as
the following Lagrangian :

28If an exponential inverse demand curve is used the expected revenue function becomes E (Ri) =R1
0
:::
R1
0

�
Be�"Q

�
qi�

n
k=1dF (qkjak). Otherwise the proof remains the same.
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max
w(qi)

Li =
R1
0
�w(qi)dF (qijai) + �i

�R1
0
Ui(wi(qi))dF (qijai)� Vi(ai)�Ri

�
+

�i
�R1
0
Ui(wi(qi))dFai(qijai)� V 0i (ai)

�
(A1:5)

Holding ai �xed the necessary condition for maximisation is found by taking the
partial derivative of (A1.5) with respect to wi(qi) and setting equal to zero:

@Li
@w(qi)

= �
R1
0
dF (qijai) + �i

R
U 0i(wi(qi))dF (qijai)

+�i
R
U 0i(wi(qi))dFai(qijai) = 0

Realising that dF (qijai) = f(qijai)dqi, dividing throughout by U 0i(wi(qi))f(qijai)
and re-arranging gives:

1
U 0i(wi(qi))

= �i + �i
fai (qijai)
f(qijai) (A1:6)

Re-arranging (A1.6) to make wi(qi) the subject, the cost-minimising contract is:

w�i (qi) = U
0�1
i

�
1

�i+�i
fai (qijai)
f(qijai)

�
(A1:7)

The values of �i and �i can be found by inserting (A1.7) into the IC and PC and
solving as two equations in two unknowns. Jewitt (1988) provides a proof for �i > 0
which is included in Appendix 2. Given �i > 0 the cost-minimising incentive contract
is a strictly convex function of qi if the agent�s risk tolerance is su¢ ciently high and
fa(qijai)
f(qijai) is a linear increasing function in qi. The proof of this and a de�nition of risk
tolerance, both from Basu et al (1985), are also provided in Appendix 2. �

Step 2: Selecting the optimal value of ai:
Assuming that Basu et al�s conditions for the convexity of w�i (qi) hold, Jewitt�s

conditions on the distribution function imply that the expected wage costs,
R1
0
w�i (qi)dF (qijai)

in (A1.4), will be convex. As such if the expected revenue function:

E (Ri) =
R B
0
:::
R B�Q�i;�j
0

R B�Q�i
0

(B �Q) qi�nk=1dF (qkjak)

is concave the principal�s problem in (A1.4) will be concave in the contract para-
meter ai. Technically all that is required for equilibrium is for E (�i) to be strictly
quasiconcave. This ensures there is an unique pro�t maximising value of ai. Adding
the assumption that E (�i) includes a stationary point then the FOC,

@E(�i)
@ai

= 0, is
a necessary and su¢ cient condition for pro�t maximisation.

Demonstrating existence:
This proof, adapted from Frank and Quandt (1963), involves demonstrating that

the assumptions of the Kakutani �xed-point theorem hold for the current model.
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Let the set �i = faig of possible contract parameters be closed and connected for
all ai. Also de�ne the following:
- a�i as the pro�t maximising value of ai for the ith �rm if for some �xed �j =

(a1; :::; ai�1; ai+1; :::; an), E
�
�i
�
a�i ; �j

��
� E

�
�i
�
ai; �j

��
for all ai.

- If an a�i exists, and if a
�
i 2 gi

�
�j
�
, then gi is the ith �rm�s reaction correspon-

dence.
- � = (a1; :::; an) and �� = (a�1; :::; a

�
n)

- The mapping G : f�g ! f��g is given by the mappings g1 : f�1g ! fa�1g; :::; gn :
f�ng ! fa�ng
An equilibrium exists in the principals�contract parameter game if it can be shown

that the Kakutani Fixed Point Theorem applies to the mapping G and hence that
the mapping G has a �xed point G(a) = a.

Lemma A1.2 The sets fa�i g are bounded for each i.

Proof. By assumption the potential e¤ort of each agent is bounded since ai 2
[a; a]. Also by assumption each �rm is required to employ an agent and must compen-
sate them for their e¤ort. As such there is a lower bound to the contract parameter
set at a�i = a. Since a pro�t-maximising �rm will always pay the agent just enough
to maintain the agent�s reservation utility and no more there is also an upper-bound
to the contract parameter set at a�i = a. �

Lemma A1.3 The sets fa�i g contain at least one element.

Proof. The functions E
�
�i
�
ai; �j

��
are bounded by the assumptions that the

expected pro�t function is continuous and strictly quasiconcave and by Lemma A1.2.
By the continuity of both the demand function and the expected cost of the incentive
contract E

�
�i
�
ai; �j

��
must have a closed graph. As such E

�
�i
�
ai; �j

��
has a largest

element and so there exists an a�i such that E
�
�i
�
a�i ; �j

��
� E

�
�i
�
ai; �j

��
. �

Lemma A1.4 The mapping G : �! � has a �xed point.

Proof.
1. � is closed by assumption and is bounded due to Lemma A1.2.
2. The mapping G maps the points � 2 � into sets of �. This holds since

G(�) 2 f��g by de�nition and f��g � �.
3. The set � is convex. This holds because � is the Cartesian product of intervals.
4. The image sets G(�) are convex. Assume that there are two points �� 2 G(�)

and ��� 2 G(�). Then for each component

E
�
�i
�
a�i ; �j

��
� E

�
�i
�
ai; �j

��
;

E
�
�i
�
a��i ; �j

��
� E

�
�i
�
ai; �j

��
;

and choosing 
, 0 < 
 < 1,
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E
�
�i
�
ai; �j

��
� min

�
E
�
�i
�
a�i ; �j

��
; E
�
�i
�
a��i ; �j

��	
<

E
�
�i
�

a�i + (1� 
) a��i ; �j

��
,

where the latter inequality holds due to the strict quasiconcavity of E
�
�i
�
ai; �j

��
.

As a result the entire line segment between a�i and a
��
i is in the image G(�).

5. G is upper semi-continuous. For this to be true it is necessary that for every
sequence �� ! �0, such that ��� 2 G(��) and ��� ! ��0, it is the case that ��0 2
G(�0). Follow a proof by contradiction. If the contrary held then

E
�
�i
�
a�0i ; �

0
j

��
< E

�
�i
�
gi
�
�0j
�
; �0j
��

for some i. As a result there would be points ��� arbitrarily close to ��0 for which
��� =2 G(��), which is a contradiction.

So by the Kakutani Fixed Point Theorem there exists � such that G(�) = �. As
such the mapping G has a �xed point. �

Hence existence of equilibrium in a generalised n-�rm setting with linear demand
has been demonstrated if suitable assumptions hold.

8.2 Appendix 2 - Proofs by other authors29

8.2.1 Conditions for the validity of the �rst-order approach - Jewitt
(1988)

Jewitt states that the conditions for the �rst-order approach to be valid are:
(i)
R q
�1 F (qja)dq is non-increasing convex in a for each value of q,

(ii)
R
qdF (qja)dq is non-decreasing concave in a,

(iii) fa(qja)
f(qja) is non-decreasing concave in q for each value of a, and

(iv) the utility of the agent is a concave increasing function of the observable
variables, i.e. !(z) = U

�
U 0�1

�
1
z

��
, where z > 0, is concave.

These conditions essentially ensure the agent�s problem is concave. To understand
how they do this let w(q) solve the �rst-order condition:R1

0
U (w (q)) dFa (qja)� V 0 (a) = 0 (A2:1)

Using the fact that � > 030, condition (iii) and that for the cost-minimising
contract:
29For ease of notation the i subscript is dropped in this Appendix.
30See section 8.2.2 for Jewitt�s proof that � > 0.
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1
U 0(w(q)) = �+ �

fa(qja)
f(qja) (A2:2)31

it is possible to say that 1
U 0(w(q)) is non-decreasing concave. Condition (iv) is

the requirement that U (w(q)) is a concave transformation of 1
U 0(w(q)) . Since the

class of non-decreasing concave functions is closed under composition it means that
U (w(q)) is non-decreasing concave in q. Lastly it is necessary to demonstrate that
the transformation ' to '� de�ned by:

'�(a) =
R1
0
'(q)dF (q; a)

preserves concavity. If this is the case then the agent�s problem will be concave
and the solution to the �rst-order condition will be a global maximum. Conditions
(i) and (ii) are necessary for this concavity preserving property to hold. �

8.2.2 Proof that � > 0 - Jewitt (1988)

Lemma A2.1 If U is an increasing concave function and V 0(a) > 0 then any �
satisfying (A2.1) and (A2.2) is positive.

Proof. Re-arranging (A2.2) gives:

fa(qja) = 1
�

�
1

U 0(w(q)) � �
�
f(qja)

Substituting this into (A2.1) and re-arranging gives:R
U(w(q))

�
1

U 0(w(q)) � �
�
f(qja)dq = �V 0(a) (A2:3)

Since
R
f(qja)dq = 1 it must be the case that

R
fa(qja)dq = 0 and in turn:

E
�
fa(qja)
f(qja)

�
= 0

So considering (A2.2) it is possible to write:

E
�

1
U 0(w(q))

�
= � (A2:4)

Now consider the LHS of (A2.3)

E
hR
U(w(q))

�
1

U 0(w(q)) � �
�
f(qja)dq

i
=
R U(w(q))
U 0(w(q))f(qja)dq � �

R
U(w(q))f(qja)dq

31For the derivation of this condition see the proof of Lemma A1.1.
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Given (A2.4) this expression gives the covariance between U(w(q)) and 1
U 0(w(q)) .

As such:

Cov
�
U(w(q)); 1

U 0(w(q))

�
= �V 0(a)

Since both U and 1
U 0 are monotone increasing functions they must have a non-

negative covariance and since V 0(a) > 0 by assumption it follows that � � 0. � = 0
can be ruled out since it would imply that w(q) would be a constant by re-arrangement
of (A2.2). Having w (q) as a constant would violate the incentive compatibility con-
straint and hence � > 0 must hold. �

8.2.3 Conditions for the cost-minimising incentive contract to be convex
- Basu et al (1985)

The following lemma is taken, with changed notation, from Appendix A of Basu et
al (1985).

Lemma A2.2 If fa(qja)
f(qja) is a linear function of q over some interval then the

cost-minimising contract, w(q), is a strictly convex function of q over that interval if
the rate of change of risk tolerance, T 0(w), exceeds one.

Proof. Since fa(qja)
f(qja) is linear in q then (A2.2) can be written as:

1
U 0(w(q)) = A+Bq

Taking the second derivative with respect to q of both sides of this expression
gives:

U 000(w)[w0(q)]2+U 00(w)w00(q)

[U 0(w)]2
� 2[U 00(w)]2[w0(q)]2

[U 0(w)]3
= 0

Dividing throughout by U 00(w)

[U 0(w)]3
and simplifying leads to:

U 0(w)w00(q) =
h
2U 00(w)� U 0(w)U 000(w)

U 00(w)

i
[w0(q)]2

Since U 0(w) > 0 and U 00(w) < 0

sign [w00(q)] = sign
h
U 0(w)U 000(w)

[U 00(w)]2
� 2
i

(A2:5)

The Arrow-Pratt measure of absolute measure of risk aversion is given by:

Ra(w) =
�U 00(w)
U 0(w)
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Since Ra(w) measures risk aversion its inverse, T (w), given by:

T (w) = 1
Ra(w)

= �U 0(w)
U 00(w) ,

measures risk tolerance. Di¤erentiating T (w) by w gives:

T 0(w) = U 0(w)U 000(w)

[U 00(w)]2
� 1

Combining this with (A2.5) leads to:

sign [w00(q)] = sign [T 0(w)� 1]

and so it follows that w00(q) > 0 if and only if T 0(w) > 1. �

A power utility function of the form U = 1
�
w� where 0 < � < 1 displays the

necessary risk tolerance.

8.3 Appendix 3 - Proof of FOCs in the parameterised model

8.3.1 The First Best (observable and veri�able e¤ort)

Lemma A3.1 When e¤ort is observable and veri�able the FOC for a symmetric
equilibrium is:

1
a2
e�

B
a

�
1
3
B3 + 3

2
B2a+ 4Ba2 + 6a3

�
+B � 5a� a3 = 0

Proof. Solve the principal�s problem in two steps.

Step 1: Find the cost-minimising contract to induce a given e¤ort ai from agent
i. Since e¤ort is observable and veri�able principal i can induce agent i to exert an
e¤ort ai by o¤ering a forcing contract. This contract will involve a payment just
satisfying agent i�s participation constraint if the e¤ort ai is exerted and a payment
of zero if any other e¤ort level is observed. As such there is no incentive compatibility
constraint in the principal�s Lagrangian:

max
wi(qi)

Li = �
R1
0
wi(qi)

1
ai
e
� qi
ai dqi

+�i

hR1
0
2 (wi(qi))

1
2 1
ai
e
� qi
ai dqi � a2i �R

i
(A3:1)

Fix the value of ai. Now take the partial derivative of (A3.1) with respect to wi(qi)
and set equal to zero to give:

@Li
@wi(qi)

= �
R1
0

1
ai
e
� qi
ai dqi + �i

R1
0
(wi(qi))

� 1
2 1
ai
e
� qi
ai dqi = 0 (A3:2)
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Re-arranging and simplifying (A3.2) gives:

w�i (qi) = �
2
i (A3:3)

i.e. the cost-minimising contract is a constant wage. Assume the principal�s
participation constraint binds with equality. Inserting (A3.3) into the participation
constraint and re-arranging gives:

�i =
a2i+R

2
(A3:4)

Inserting (A3.4) back into the expression for w�i (qi) gives the cost-minimising
contract for inducing an e¤ort level ai as:

w�i (qi) =
�
a2i+R

2

�2
(A3:5)

Step 2: Now principal i�s problem is to select the optimal value of ai to write in
the contract w�i (qi). Note the expected revenue function, E (Ri), is unchanged from
section 3. Setting R = 0 the expected cost of inducing the e¤ort ai, i.e. the expected
cost of w�i (qi), is simply: �

a2i
2

�2
As a result principal i�s second step problem is:

max
ai
E (�i) =

aia
3
j

e
� B
aj

(ai�aj)2
+ a2i e

� B
ai
Bai�Baj+2a2i�3aiaj

(ai�aj)2
+ (B � 2ai � aj) ai �

�
a2i
2

�2
(A3:6)

The FOC of this problem is:

@E(�i)
@ai

=

�a3j e
� B
aj

(ai�aj)3
(ai + aj) +

e
� B
ai

(ai�aj)3

�
B2a2i � 2B2i aiaj +B2a2j + 3Ba3i

�8Ba2i aj + 5Baia2j + 4a4i � 11a3i aj + 9a2i a2j

�
+B � 4ai � aj � a3i = 0

Appealing to the problem�s symmetry, combining the �rst two terms and applying
l�hôpital�s rule three times the FOC for a symmetric equilibrium is:

1
a2
e�

B
a

�
1
3
B3 + 3

2
B2a+ 4Ba2 + 6a3

�
+B � 5a� a3 = 0 (A3:7)

�
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8.3.2 Firms Maximise Joint Pro�ts (collusion)

Lemma A3.2 When �rms maximise joint pro�ts, and e¤ort is observable and veri-
�able, the FOC for a symmetric equilibrium is:

1
2a2
e�

B
a (B3 + 4B2a+ 10Ba2 + 12a3) +B � 6a� a3 = 0

Proof. Step 1: Since e¤ort is observable and veri�able the cost-minimising
contracts w�i (qi) and w

�
j (qj) take the same form as in the proof of Lemma A3.1:

w�i (qi) =
�
a2i
2

�2
and w�j (qj) =

�
a2j
2

�2
Step 2: To �nd the optimal values for ai and aj it is easiest to consider the �rms

as a single monopolist with two agents. The problem facing the combined �rm is:

max
ai;aj

E (�i+j) = E (Ri) + E (Rj)�
�
a2i
2

�2
�
�
a2j
2

�2
where

E (Ri) +E (Rj) =
1

ai�aj

�
a2i e

� B
ai (B + 2ai)� a2je

� B
aj (B + 2aj)

�
+ ai (B � 2ai � aj) +

aj (B � ai � 2aj) (A3:8)

There are two FOCs for this problem, @E(�i+j)
@ai

= 0 and @E(�i+j)

@aj
= 0. The FOC

with respect to ai is:

@E(�i+j)

@ai
= 1

(ai�aj)2

 
e
� B
ai (4a3i � 6a2i aj + 3Ba2i +B2ai �B2aj � 4Baiaj)

�a2je
� B
aj (B + 2aj)

!
+B �

4ai � 2aj � a3i = 0

Applying symmetry and using l�hôpital�s rule three times the FOC for maximisa-
tion of joint pro�ts becomes:

1
2a2
e�

B
a (B3 + 4B2a+ 10Ba2 + 12a3) +B � 6a� a3 = 0 (A3:9)

�
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8.4 Appendix 4 - Proof of Proposition 3

Proposition A4.1 The ranges of investment costs where a social planner would
invest in a perfect monitoring technology but two competing �rms would not are:

Market Size (B) Investment Cost Range
50 37:5 < C < 45:6
100 113:9 < C < 125:6
200 308:8 < C < 333:9

Proof. The proof is split into two parts. The �rst involves �nding the ranges
of investment costs where di¤erent Nash equilibria occur in the investment subgame.
The second is to �nd the ranges of investment costs where a social planner maximising
total surplus would choose to invest/not invest. Comparing these cost ranges then
leads to Proposition A4.1. The proof described is for B = 100. For other values of B
the procedure is qualitatively identical but involves di¤erent numerical values.32

Lemma A4.1 In the initial investment subgame:

� if C < 111: 0 Invest is the strictly dominant strategy and the Nash equilibrium
is: (Invest; Invest)

� if 111:0 < C < 113:9 there are two Nash equilibria: (Invest;NotInvest) and
(NotInvest; Invest)

� if C > 113:9 NotInvest is the strictly dominant strategy and the Nash equilib-
rium is: (NotInvest;NotInvest)

Proof. To determine the equilibrium decisions of each �rm the pay-o¤matrix for
the two principals must be formed. This involves to identifying the optimal contract
parameters, a�i and a

�
j , which maximise the expected pro�ts of each �rm given di¤erent

combinations of investment decisions. If �rm i chooses NotInvest ai is selected to
maximise (9) and if �rm i chooses Invest ai is selected to maximise (A3.6).33 The
values of a�i and a

�
j for each of the decision pairs, when B = 100, are shown below:

Decision Pairs a�i , a
�
j to 3d.p.

(Invest; Invest) 4:283; 4:283
(Invest;NotInvest) 4:312; 2:575
(NotInvest; Invest) 2:575; 4:312

(NotInvest;NotInvest) 2:592; 2:592

32The full workings for B = 50 and B = 200 are available on request.
33When only one �rm invests the problem facing the �rms is no longer symmetric and so a�i = a

�
j

no longer holds. The two �rst-order conditions with respect to ai and aj therefore are solved as a
system of two equations in two unknowns.
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Inserting a�i and a
�
j back into the �rms�pro�t functions allows the �rms�pro�ts

gross of investment costs to be obtained. Subtracting the investment cost, C, when
a �rm chooses Invest gives the following pay-o¤ matrix:

Principal j
Invest NotInvest

Principal i Invest 289:1� C; 289:1� C 296:5� C; 178:2
NotInvest 178:2; 296:5� C 182:6; 182:6

By comparing the pay-o¤s between di¤erent decision pairs the Nash equilibria of
the investment subgame can be characterised for di¤erent values of C. This gives
Lemma A4.1. �

Now consider the decision of a social planner maximising total surplus. The social
planner has three options: invest in neither �rm, invest in one �rm or invest in both
�rms. For now assume that the social planner can only make di¤erent investment
decisions compared to pro�t maximising �rms.34 As a result the values of a�i and a

�
j

stated in the proof of Lemma A4.1 are still used in the calculations below.

Lemma A4.2 A social planner maximising total surplus will:

� invest in the monitoring technology for both �rms if C < 122:3

� invest in the monitoring technology for one �rm if 122:3 < C < 125:6

� not invest if C > 125:6

Total surplus gross of investment costs is given by:

E (TSg) =
R B
0

R B�qj
0

�
B (qi + qj)� (qi+qj)

2

2

�
1
ai
e
� qi
ai

1
aj
e
� qj
aj dqidqj +

(B)2

2

�
1

ai�aj

�
aie

� B
ai � aje

� B
aj

��
� E (wi (qi))� E (wj (qj)) (A4:1)

where

B (qi + qj)� (qi+qj)
2

2

is the area under the inverse demand curve when qi + qj � B and

(B)2

2

�
1

ai�aj

�
aie

� B
ai � aje

� B
aj

��
34The possibility of the social planner directly setting e¤ort/production levels is ruled out. From

a policy perspective this seems a reasonable distinction to make. In the US and EU investment
subsidies are fairly common whereas policymakers micro-managing �rms�operational decisions is
much rarer.
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is the area under the inverse demand curve when qi + qj > B multiplied by the
probability of qi + qj > B.

The probability that qi + qj > B is simply:

P (qi + qj > B) = 1� P (qi + qj � B)

where:

P (qi + qj � B) =
R B
0

R B�qj
0

1
ai
e
� qi
ai

1
aj
e
� qj
aj dqidqj = 1� 1

ai�aj

�
aie

� B
ai � aje

� B
aj

�
After completing the necessary integration and substituting in the relevant values

of a�i and a
�
j the following values of total surplus net of investment costs are obtained:

Invest in both �rms Invest in one �rm Don�t Invest
633:3� 2C 511:0� C 385:4

By comparing these values Lemma A4.2 is obtained. �

Comparing the cost ranges for di¤erent investment decisions in Lemmas A4.1 and
A4.2 then leads to Proposition A4.1. �

8.5 Appendix 5 - Proofs involving exponential inverse de-
mand

8.5.1 Expected pro�ts are strictly quasiconcave

To demonstrate that the expected pro�t function, E(�i), is strictly quasiconcave
�rstly the expected revenue function needs to be derived for the n-�rm case.

Lemma A5.1 The expected revenue function for �rm i in an n-�rm setting is
given by:

E (Ri) =
Dai

(�ai+1)
2�nk 6=i(�ak+1)

Proof. The expected revenue function for �rm i in an n-�rm setting can be
written as:

E (Ri) =
R1
0
:::
R1
0

R1
0
De��Qqi�

n
k=1

1
ak
e
� qk
ak dqk

where �rm i is just a particular �rm between 1 and n. For the following explana-
tion it is helpful to re-write the above expression as:
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E (Ri) =
R1
0
:::
R1
0

R1
0
De��(qi+Q�i)qi

1
ai
e
� qi
ai dqi�

n
k 6=i

1
ak
e
� qk
ak dqk (A5:1)

where Q�i = (
Pn

k=1 qk)� qi.

Now it is necessary to integrate with respect to each dqk beginning with dqi. Since
the probability density functions for the quantities produced by �rms other than i
are independent of qi they can be moved outside of the integral with respect to dqi
and can be dealt with subsequently. As such the �rst integral to consider is:

R1
0
De��(qi+Q�i)qi

1
ai
e
� qi
ai dqi =

R1
0

D
ai
e
�(�ai+1)qi��aiQ�i

ai qidqi =
Dai

(�ai+1)
2 e��Q�i

After this �rst integration E (Ri) can be written as:

E (Ri) =
R1
0
:::
R1
0

Dai
(�ai+1)

2 e��(qj+Q�i�j)
1
aj
e
� qj
aj dqj�

n
k 6=i;j

1
ak
e
� qk
ak dqk

where Q�i�j = (
Pn

k=1 qk) � qi � qj. Considering the integral with respect to dqj
gives:

R1
0

Dai
(�ai+1)

2 e��(qj+Q�i�j)
1
aj
e
� qj
aj dqj =

Dai
(�ai+1)

2

R1
0

1
aj
e
�
 
(�aj+1)qj+�ajQ�i�j

aj

!
=

Dai
(�ai+1)

2(�aj+1)
e��Q�i�j (A5:2)

As a result E (Ri) becomes:

E (Ri) =
R1
0
:::
R1
0

Dai
(�ai+1)

2(�aj+1)
e��Q�i�j�nk 6=i;j

1
ak
e
� qk
ak dqk

Integrating with respect to each subsequent dqk is qualitively identical to the
operation performed when integrating with respect to dqj. For example, if the next
integration is with respect to dql the resulting expression, equivalent to (A5:2), is:

Dai
(�ai+1)

2(�aj+1)(�al+1)
e��Q�i�j�l

Once all the integration procedures have been performed the expected revenue
function can be expressed as:

E (Ri) =
Dai

(�ai+1)
2�nk 6=i(�ak+1)

(A5:3)

�

Having found E (Ri), and since the structure of the agency relationship remains
identical to that in Section 2, the expected pro�t function for �rm i when agency
costs are present is:
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E (�i) =
Dai

(�ai+1)
2�nk 6=i(�ak+1)

� 5
4
a4i (A5:4)

To demonstrate that this function is strictly quasiconcave in ai note that if a
function is strictly increasing before it is strictly decreasing it is strictly quasiconcave.
Hence for E (�i) to be strictly quasiconcave it is necessary to show that: (i)

@E(�i)
@ai

changes sign only once over the range ai 2 [a; a], (ii) this sign change is from positive
to negative, and (iii) if @E(�i)

@ai
= 0 it occurs at only one point.

The expression for @E(�i)
@ai

is:

@E(�i)
@ai

= D(1��ai)
(�ai+1)

3�nk 6=i(�ak+1)
� 5a3i (A5:5)

As long as a > 0 is su¢ ciently small @E(�i)
@ai

will start as a positive value.35 By

inspection both D(1��ai)
(�ai+1)

3�nk 6=i(�ak+1)
and �5a3i are strictly decreasing in ai and so

@E(�i)
@ai

is a strictly decreasing function in ai. Assuming a is su¢ ciently large not to act as
a constraint then as ai grows large

@E(�i)
@ai

will turn negative and stay negative. Since
@E(�i)
@ai

is a strictly decreasing function it also means that this function will cross the

horizontal axis only once implying that @E(�i)
@ai

= 0. Hence it has been shown that the
expected pro�t function is strictly quasiconcave over the range ai 2 [a; a].

Since E (�i) is strictly quasiconcave then by Theorem 1 an equilibrium will exist
in the �rms�contract parameter choice game.

8.5.2 Uniqueness of the two �rm equilibrium

In the case of two �rms the �rst-order condition for �rm i to be pro�t-maximising is:

@E(�i)
@ai

= D(1��ai)
(�ai+1)

3(�aj+1)
� 5a3i = 0 (A5:6)

Re-arranging this condition it is possible to write aj as an explicit function of ai:

aj =
D(1��ai)

5�a3i (�ai+1)
3 � 1

�
(A5:7)36

By symmetry there will be an equivalent equation for ai in terms of aj:

35 @E(�i)
@ai

will be positive whenever:

D >
5a3i (�ai+1)

3�nk 6=i(�ak+1)

(1��ai)

Note that as ai tends to zero the right-hand side of this inequality tends to zero. Hence the
requirement for @E(�i)

@ai
to be positive at a tends to the condition D > 0 as a becomes small.

36Note that (A5.7) and (A5.8) are not the reaction functions for �rm�s i and j.
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ai =
D(1��aj)

5�a3j (�aj+1)
3 � 1

�
(A5:8)

To demonstrate an unique equilibrium exists a basic geometric argument can be
used. The aim is to prove that the lines described by (A5.7) and (A5.8) cross once,
and only once, in (ai; aj)-space. Firstly note that both equations are continuous.
Also note that because ai; aj 2 [a; a] both (A5.7) and (A5.8) are bounded and closed.
Lastly recall the starting assumption that a and a are su¢ ciently far apart never to
impinge on the equilibrium outcome. Combining continuity, boundness, closedness
and the symmetry of the problem the lines represented by (A5.7) and (A5.8) must
cross at least once.

The next stage is demonstrate that the lines represented by (A5.7) and (A5.8)
cross only once. This involves demonstrating two things: (i) both (A5.7) and (A5.8)
are decreasing convex over the range [a; a], and (ii) (A5.7) and (A5.8) do not coincide.

Lemma A5.2 The functions (A5.7) and (A5.8) are both decreasing convex over
the range of ai; aj 2 [a; a].

Proof. Due to symmetry if one of (A5.7) and (A5.8) is proven to be decreasing
convex the other function will also be decreasing convex. Consider (A5.7) only. The
function is decreasing as long as:

@aj
@ai
= � 1

5�
D

a4i (�ai+1)
4 (�5� 2a2i + 4�ai + 3) < 0

which will be the case if

�5� 2a2i + 4�ai + 3 > 0 (A5:9)

By inspection of (A5.7) aj is gauranteed to be negative once ai � 1
�
. Setting the

left-hand side of (A5.9) equal to zero and �nding the roots of the resulting equation it
is possible to say that when 4�2

p
19

10�
< ai <

4+2
p
19

10�
it implies @aj

@ai
< 0. Since 4�2

p
19

10�
< 0

and a > 0 we only need to check that ai < 4+2
p
19

10�
holds for the range of ai being

considered. Consider ai = 1
�
. Since 1

�
< 4+2

p
19

10�
it means that for any positive value

of aj such that ai � a > 0 @aj
@ai
< 0 holds. Hence (A5.7) is decreasing in ai and (A5.8)

is decreasing in aj for the region of (ai; aj)-space being considered.

For the function represented by the right-hand side of (A5.7) to be convex requires:

@2aj
@a2i

= 6
5�

D
a5i (�ai+1)

5 (�5� 3a3i + 3� 2a2i + 6�ai + 2) > 0

which will hold if:
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�5� 3a3i + 3� 2a2i + 6�ai + 2 > 0 (A5:10)

holds. Again using the assumption aj � a > 0 it is su¢ cient to demonstrate
that (A5.7) is convex when ai satis�es a � ai � 1

�
. The argument for @2aj

@a2i
> 0

is that (A5.10) is a cubic and so has two stationary points. It can be shown that
the two stationary points of (A5.10) are at 6�2

p
99

30�
and 6+2

p
99

30�
. Only the second

stationary point occurs for a positive value of ai. By inspection the a3i term has a
negative coe¢ cient and hence when jaij is large (A5.10) will be decreasing. Hence
when ai � a (A5.10) will be quasiconcave. Also note that when ai = a for a small
enough that value of (A5.10) is 2 > 0. When ai = 1

�
the value of (A5.10) is 6 > 0.

Since (A5.10) is postive at ai = a and at ai = 1
�
and is also quasiconcave between

these two points means that for the relevant range of ai (A5.10) is positive. In turn
this means that @2aj

@a2i
> 0 for the relevant region of (ai; aj)-space and so (A5.7) is

decreasing convex as required. �

That (A5.7) and (A5.8) are both decreasing convex when combined with the other
assumptions implies that they must either coincide or cross only once.

Lemma A5.3 The lines represented by (A5.7) and (A5.8) do not coincide.

Proof. Follow a proof by contradiction. Firstly consider the case where ai 6= aj.
Assume the lines do coincide. Then it must be the case that when either ai = a or
aj = a both (A5.7) and (A5.8) must hold.

Consider the case where aj = a and denote the value of ai which solves (A5.7)
and (A5.8) as bai. Then (A5.7) and (A5.8) can be re-written as:

5�ba3i (�bai + 1)3 (�a+ 1) = D� (1� �bai) (A5:11)
and

5�a3 (�a+ 1)3 (�bai + 1) = D� (1� �a) (A5:12)

Assume bai > a, this implies that the right-hand side of (A5.11) has a smaller value
than the right-hand side of (A5.12). However bai > a also implies that the left-hand
side of (A5.11) has a higher value than the left-hand side of (A5.12). As a result
there cannot be a value of bai which satis�es both (A5.11) and (A5.12). Hence there
is a contradiction and (A5.7) and (A5.8) do not coincide when ai > a. As aj = a the
case of ai < aj does not need to be considered. If aj > a making ai < aj the logic
of the proof would still hold. Also, by symmetry, the same arguments hold when we
hold ai �xed and vary aj.

Now consider the case where ai = aj = a and again assume both lines coincide.
The only line that can satisfy these two conditions is a straight line decreasing at
an angle of 45 degrees. The second derivative of such a line must be zero. However
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from Lemma A5.2 it is known that for plausible values of ai; aj > a: @2aj
@a2i

> 0 and
@2ai
@a2j

> 0 from (A5.7) and (A5.8) respectively. Hence there is a contradiction. (A5.7)

and (A5.8) cannot be satis�ed whilst ai = aj = a and both lines coincide.�

Since (A5.7) and (A5.8) do not coincide it must be the case that they cross
only once. Hence an equilibrium exists and it must be unique. The same form of
argument also demonstrates an unique equilibrium exists when the case of observable
and veri�able e¤ort is considered.

8.5.3 FOCs for two �rms

Moral Hazard:
In the subsection above (A5.6) gives the FOC for pro�t maximisation by �rm i.

Re-arranging this condition and applying symmetry it is straightforward to show that
the equilibrium value of ai = aj = a must satisfy:

D � 5a7� 4 � 20a6� 3 � 30a5� 2 � 20a4� � 5a3 �Da� = 0

First Best:
When e¤ort is observable and veri�able the expected pro�t function for �rm i is:

E (�i) =
Dai

(�ai+1)
2(�aj+1)

� 1
4
a4i

and the FOC is:

@E(�i)
@ai

= D(1��ai)
(�ai+1)

3(�aj+1)
� a3i = 0

Re-arranging and applying symmetry the equation that the equilibrium value of
a must satisfy is:

D � a7� 4 � 4a6� 3 � 6a5� 2 � 4a4� � a3 �Da� = 0

Joint Pro�t Maximisation:
The pro�t maximisation problem faced by the �rms is:

max
ai;aj

E (�i+j) =
Dai

(�ai+1)
2(�aj+1)

+
Daj

(�aj+1)
2(�ai+1)

� 1
4
a4i � 1

4
a4j

The two FOCs are:

@E(�i+j)

@ai
=

D(1�2aiaj�2�ai�)
(�ai+1)

3(�aj+1)
2 � a3i = 0

@E(�i+j)

@aj
=

D(1�2aiaj�2�aj�)
(�aj+1)

3(�ai+1)
2 � a3j = 0
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Applying symmetry and re-arranging both of these conditions reduce to:

D � a8� 5 � 5a7� 4 � 10a6� 3 � 10a5� 2 � 5a4� � a3 � 2Da2� 2 �Da� = 0 37

8.5.4 FOCs when three and four �rms

The FOCs used to �nd the equilibrium values of a in the three and four �rm cases
are provided below. They are obtained using a procedure equivalent to that for the
two �rm case.

Three Firms:
First Best:

D � a8� 5 � 5a7� 4 � 10a6� 3 � 10a5� 2 � 5a4� � a3 �Da� = 0

Moral Hazard:

D � 5a8� 5 � 25a7� 4 � 50a6� 3 � 50a5� 2 � 25a4� � 5a3 �Da� = 0

Joint Pro�t Maximisation:

D � a10� 7 � 7a9� 6 � 21a8� 5 � 35a7� 4 � 35a6
� 3 � 21a5� 2 � 7a4� � 3Da3� 3 � a3 � 5Da2� 2 �Da� = 0

Four Firms:
First Best:

D � a9� 6 � 6a8� 5 � 15a7� 4 � 20a6� 3 � 15a5� 2 � 6a4� � a3 �Da� = 0

Moral Hazard:

D � 5a9� 6 � 30a8� 5 � 75a7� 4 � 100a6� 3 � 75a5� 2 � 30a4� � 5a3 �Da� = 0

Joint Pro�t Maximisation:

D� a12� 9� 9a11� 8� 36a10� 7� 84a9� 6� 126a8� 5� 126a7� 4� 84a6� 3� 36a5� 2� 4Da4
� 4 � 9a4� � 11Da3� 3 � a3 � 9Da2� 2 �Da� = 0

37Due to the functional forms of @E(�i+j)
@ai

and @E(�i+j)
@aj

, for now, assume that the problem is
strictly quasiconcave.
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